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1. Introduction. Consider the boundary value problem 

Lu- (pu - (pU) + qu = f 
(1) qu 0 o& u =0 on OR 

in a domain R with polygonial boundary &R. The coefficients p, q are assumed 
positive, bounded, and bounded away from 0. It may be shown [1, p. 20] that for f 
square integrable, (1) has a unique "generalized solution" u E Ho1(R). (The 
notation is given in ?2.) It may be conjectured that if p is smooth enough, u has 
generalized derivatives of the second order and f1 U 112 -< c| f 11. (In [3, p. 665] 
such a result is given if aR is sufficiently smooth.) 

We consider a class of finite difference approximations of (1), 

(2) L1v = fi, 

in which the mesh points of the approximation are the vertices of any triangulation 
of R by acute triangles. These difference approximations were first considered by 
MacNeal [2] and include as a special case the usual 5 point difference approxima- 
tion [5, chapter VI] to (1). It will be shown that, if u E Ho1(R) n H2(R) is a solu- 
tion of (1), a mean square norm of the error, u - v, is bounded by c'h|l u 112,where 
c' is an explicit constant and h is the maximum distance between neighboring mesh 
points. 

This result contrasts with that of Nitsche and Nitsche [4] who obtain an 0(h2/5) 
error estimate of the maximum norm of u* - v for more general second order 
elliptic equations and more special difference approximations. (u* is a certain 
average of u.) 

In the theories of heat conduction and neutron diffusion it is important to let 
p, q be discontinuous. Let p, q be smooth in the closure of each of a finite number of 
subdomains Ri which make up the domain R. It is required that at each interface 
aRi, the solution u satisfies 

(3) u, paOu/an continuous across aRi, 

where n is the normal vector at &Ri,. If u is twice differentiable in each R, and 
satisfies (1), (3), then for any + E Ho1(R), 

(4) If {p'Px ux + pqV uy + qu -fip} dx dy = 0, 

so u is the generalized solution whose existence is shown in [1]. The proofs in this 
paper are valid if u E H2(T) where T is any triangle in the triangulation which 
gives rise to the finite difference approximation (2). One may conjecture that the 
unique generalized solution u E Ho1(R) of (4) is in H2(Ri) for each subdomain Ri. 
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If this is true and if the 3Ri are polygons, then the results of this paper apply if the 
triangulation contains the polygons dRi . 

2. The Difference Equations. If u is a function on a domain U, let 11 u ul = 

I 2 u Idx dy2 . Define 11 U u 1112 = 11 u 112 + 11 u, U 112 + 11 U u 112 

11 u, u 1122 = 11 U, u 1l12 + !1 Uxx u U12 2 + U2 11 uy, U 112 H(U), H1(U), 
H2( U) will denote the closure under the corresponding norms of the set of functions 
infinitely differentiable in a neighborhood of U. These are Hilbert spaces. Ho(U), 
Ho 1( U)) Ho2(U) will denote the closed subspaces spanned by those infinitely dif- 
ferentiable functions which vanish outside a compact subset of U. The usual 
properties of these spaces will be assumed. In particular two simple inequalities 
should be noted. Namely 

8(P) I < Cl 1U, U 12, U E H2(U) 

{ fI ds ?_ C2|U, U 1, U E H (U). 

In these inequalities U is a triangle and cl, C2 depend only on U. P is a vertex of U 
and, in the second inequality, the left side is a line integral taken along a line seg- 
ment in U. From the first inequality it is seen that the u(P) are meaningful quan- 
tities for our generalized solutions. 

When U = R we omit the U in the above norms and spaces. 
Let 3 be a triangulation of R such that the sides of the polygons 3R, .9Ri, all 

lie on the lines of 5, and such that there are no obtuse triangles in 3. Let 8 be the 
set of vertices of 5, and let So denote the points of 8 lying inside R. Let there be N 
points of So . We will say that two points of 8 are neighbors if they are both vertices 
of a triangle of 3. 

Let p(P, Q) be the distance between points P and Q, and let h = max p(P, Q), 
the maximum being taken over all neighbors P, Q E S. Let C3 > 1 be a constant 
such that 

(6) c3 = p(A, B)/p(C, D) _ C3 

for each point P E 8, where A, B, C, D range over the set consisting of P and its 
neighbors. The error bound will depend upon C3, which may be thought of as a 
"local maximum mesh ratio". Let h(P) be the maximum distance from P to any 
one of its neighbors. 

Let e be the collection of all real valued mesh functions on 8, and let 6o C e 
consist of those functions vanishing outside So . Then Co is an N dimensional vector 
space and L1 will be an N by N matrix acting on Co. We introduce two inner prod- 
ucts on Co . If a, i E Co , these are defined by 

(a, 3) = E h(P)2a(P)3(P), 

(a. f)i = (a, d) + Zi (a(P) - a(Q))(O(P) - (Q)). 

The sum E is taken over all P E S and the sum El is taken over all neighboring 
points P, Q E S. The corresponding norms are denoted by 11 a 11 and 11 a |1. 

Now let 3(P) be the set of triangles in 5 with P E So as a vertex. Let T E 3(P) 



DIFFERENCE EQUATIONS ON A TRIANGULATION MESH 205) 

B2 

p A, 

FIG. 1. 

have vertices P, A1, A2, and let B1C, B2C be the perpendicular bisectors of 
PA1 , PA2 (see figure 1). Since T is acute, C lies in T. Let U denote the quadrilateral 
defined by PB1CB2 . We define functions a,(P, T), b(P, T), fi(P, T) by the equa- 
tions 

a (P, T) = A p ds, i = 1, 2 

b(P, T) = fl q dx dy, 

f1(P, T) = f dx dy. 

Then the ditference approximation (2) arising from the triangulation 3 is defined by 

Liv(P) = E {ai(P, T)(v(P) - v(Ai)) + a2(P, T)(v(P) - v(A2)) + b(P, T)v(P)} 

= Efi(P, T), 

the sums being taken over T E 3(P). Define functions b(P), a(P, Q) by 

b(P) = ,I b(P, T), T E 3(P) 

a(P, Q) = Ja1(P, T) + a2(P, T'), Q a neighbor of P 
a(P, Q) 0, Q not a neighbor of P, 

where T, T' E 3(P) n 3(Q). Then (2) may be written 

(7) Liv(P) a(P, Q)(v(P) - v(Q)) + b(P)v(P) = fi(P), P E So. 

By requiring v E Co (7) is a system of N equations in N unknowns. L1 is a sym- 
metric, positive definite "Stieltjes" matrix. If 3(P) contains exactly 6 triangles for 
each P, L1 is block 2-cyclic, and the system (7) may be solved numerically by one 
of the variety of methods discussed in [5]. 

One could introduce an area weight at each P E 8 defined by ZT I U 1, T E 3(P), 
where I U I is the area of the quadrilateral U, and use these weights to construct 
norms equivalent to fl a |n, Ia ? ||1 , but having more geometric meaning. The equiva- 
lence would be expressed with the constant C3 . 
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3. Some Remainder Terms. In this section we give two approximation formulae 
with the error bounded in a form suitable for our later use. Let 

d = max {p(P,Q),P,QEfR}. 

LEMMA 1. There is a c4> 0 depending only on d such that, if U is the quadrilateral 
PB1CB2, u E H2( U), and q is a nonnegative bounded function on U, then 

(8) f qu dx dy - u(P) f q dx dy ?- C4(SUp q)h(P )2 ff U, U 112. 

Proof. It suffices to prove (8) for u having continuous second derivatives. 
Referring to Figure 1 we may take P to be the origin of coordinates and A1 to lie 
on the positive x axis. Using polar coordinates let the line B1CB2 be given by r = 

R(0), 0 < 0 _ a = the angle at P. For (r, 0) E U one has 

u(r, 0) - u(P) = _ ur(p, 0) dp = rur(r, 0) -f pUrr(p, 0) dp. 

Multiplying this by rq and integrating over U one finds that the left side of (8) 
is bounded by 

ra R(0) (r 

]__ rq rur(r, 0) -j pUrr(p, 0) dp} dr do 

? (sup q )h(P) ft lUr I dx dy + (sup q)h(p)2 ( lUrr dx dy 

< (sup q)h(P)[1 + h(P)] U 11/2.11 U, U 112 

which proves (8) since I U I < h(P)2 and 1 + h(P) ? 1 + d. 
LEMMA 2. There is a c5 > 0 depending only on C3 such that, if V is the triangle 

PCA1 , L is the line segment B1C, r is a unit vector pointing from P to A1 , u E H2(V), 
and p is a nonnegative bounded function on L, then 

(9) p(r7 V)u ds p (AP) - u(P) f p ds ?- c5(sup p)h(P) II u, V ff2. 

Proof. It suffices to prove (9) for u having continuous second derivatives. 
Referring to Figure 1 we may take B1 to be the origin of coordinates and A1 to lie 
on the positive x axis. Let p(P, B1) = p(Ai, B1) = a, p(C, B1) = b. If (y) = 
a(b - y)/b the line CA1 contains the points (t(y), y) and the line CP contains the 
points (-t(y), y), 0 _ y ? b. The inequality (9) follows from the two inequalities 

fb p(O, y) [u (0, Y) - [U(2(8) y y) - u( -(y), ) dy 

< c6(sup p)h(P) || U, V 112 

|b u [U( 
(y), y) -U(- (Y), y) _ u(a,0 ) - u(-a, 0) 

(11) Jy0 L2~(y) 2a 

_ C7(sup p)h(P) II u, V 112 

where c6 and C7 are positive constants depending only on C3. To prove (10) one 
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may use Taylor's theorem with integral remainder term to bound the left side of 
(10) by 

1 fb J - (sup p) V 11/2 l U, V 112 -(u p) UXX(t, y) Idt ?12 2 vy=o Jt=-& (V) -2 

and note that I V < h(P)2. 
The inequality (11) will now be proved. Define D2u = [ux + x +uYv]"2. 

Then 

? (ux(62(y), y) - ux(Ob, 0)) = + d ux(o2(t), t) dt 

a-'(a2 + b2)1/2 D2u (0(t), t) dt. 
t=0 

If this is integrated with respect to 0 over (-1, 1 ) one obtains 

/1 t' (y) b 

4( 1)t (X, Y) dx- b u (x, 0) dx) 
(12) y () 

< a-'(a2 + b2)2 f (t) D2u (s, t) ds dt. 

After multiplying both sides of (12) by p(O, y), integrating with respect to y 
over (0, b), and interchanging the order of the y and t integrations, one finds that 
the left side of (11) is bounded by 

(sup p)ba-2(a2 + b2)"12 D2U D dx dy < (sup p)c51 V I Ilu, V 112. 

This proves (11) because I y I ? h(P)2. 

4. The Discretization Error. For our error bounds we assume there exists a 
c6 > 1 such that in the closure of R, 

(13) 1/c6 < p(x, y), q(x, y) ?_ C6 

We also define a constant C7 by the condition that no P E 8 has more than C7 neigh- 
bors. 

LEMMA 3. There is a C8 depending on C3, C6, and C7 such that 

(14) C81 la Ill ? {IE a(P)Lia(P)}112 < C8 11 aI 

for any a E C0, the sum being taken over P E S 
Proof. One has 

(15) Za(P)Lia(P) = 2Zia(P, Q)(a(P) - a(Q))2 + Zb(P)a(P)2. 

The proof follows easily from (15). 
Li is symmetric and (15) shows that it is positive definite. Hence we define an 

inner product on Co by (a, d)' = a a(P)L,o(P), and denote the corresponding 
norm by 11 a 11'. 

THEOREM 1. Let u E Hol n H2 be a solution of (1), and let v E Co be the correspond- 
ing solution of (2). Then there is a constant cg depending only on C3, C6, C7, and d, 
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such that, if e E Co is defined by e(P) = u(P) - v(P), then 

IeI e 1 hc9 11 u 12. 

Proof. Using (14), one has 

|| e fll _ C8 || e 

Hence the theorem follows from the inequality 

(16) 1 (e, e)' I< hclo 11 le Ill 11 u 112, 

where clo depends only on C3, C6, C7, and d. One has Lie = Liu - fi. Because 
u E H2, one has, referring to Figure 1, 

f1(P) = {p du ds + qu dx dy}, 

the sum being taken over all triangles T E 3(P); the line integral is taken over the 
line segments BlCB2, and the area integral is taken over the quadrilateral PB1CB2. 
Analogous to (15), a calculation gives 

(17) (e, e)' = 2Z [e(P) - e(Q)]E(P, Q) + ? e(P)F(P), 

where 

E(P,A) u u(P) - u (A1) f d f du E(P) Al) = ()p (A p ds - P do) p(P, Al) J dn 

the line integral being taken over BlC and the corresponding perpendicular bi- 
sector on the other side of PA, (see Figure 1), and 

F(P) = u(P) ff q dx dy - up dx dy, 

the area integrals being taken over all the quadrilaterals PB1CB2 of triangles 
T E 3 (P). Using Lemmas 1 and 2 we obtain 

(e, e)' < 2'cc6ZE h(P)fl u, T 112 1 e(P) - e(Q) I + c4c6E h(P)2 11 u, T 112 1 e(P) 

< clh{ 
I 
e(P) - e(Q) 12}1/2 11 u 112 + cilh{ E h(P)2e(P)2}"12 11 u 112 

? 2clih II e Ill II u 11f2 

which proves the theorem. 
It is easily seen that the proof remains valid if u E H2(T) for each triangle 

T of 3. 
To extend this result to the case q > 0 it seems necessary to make further 

restrictions on the triangulation. The first requirement is 
(A) There is a Cl2 > 1 such that whenever A, B, C, D E 8 and A and B are 

neighbors and C and D are neighbors, one has 

(C12)- l p(A, B)/p(C, D) <_ C 12 

To state the second condition, let a line X of 3 be a sequence {Pl, P2, , Pn} 
of points of 8 such that Pi is a neighbor of Pi+, 1 _ i < n, define the ends of 
X to be the points Pi , Pn , and define the length of X to be E p(Pi , Pi+l), 1 _ i < n. 
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The second condition is 
(B) 8 may be written as a union of a set of lines X such that no two lines have a 

point in common and each line has a least one endpoint on (9R. Given such a de- 
composition of 8, let cl3 denote the maximum length of the lines X in the decomposi- 
tion. 

We also assume that there exists a c14 > 1 such that in the closure of R, 

p(x, y), q(x, y) C14 

(18) q (x, y) > 0 

P p(x, y) >_ I/C14 

Then Lemma 3 is easily extended as follows. 
LEMMA 4. Suppose 3 satisfies (A) and (B) and suppose (18) holds. Then there 

is a c15 depending on C7, C12 , c13, and c14 , such that 

(c15) f1 a fli _ {i a(P)Lia(P)}"12 _ C11 a 

for any aE Co 0, the sum being taken over P E S. 
Proof. Let X = {PI1, * * *, Pnj be one of the lines of (B). Then 

I a(Pj)l - a(Pi+l) - a(Pi)J _ [(n - I)E(a(Pi+i) -a(Pi) ]1127 

1 ? <in. 

Hence 

Z(n - 1)-2 a(Pi)2 < Z(a(Pi+,) - a(Pi))2, 1 i < n. 

Now for any j, 1 < j < n, 

c13_ ? p(Pi, Pi+1) ? (n - 1)h(Pj)(c12)'. 

Hence 

Eh(Pi)2a(Pi)2 _ (c12c13)2Z(a(Pi+, - a(Pi))2, 1 ? < n. 

The left sum may be extended over 1 < i ? n. This is obvious if a (Pn) = 0, and 
if a(Pi) = 0 the same argument may be applied to the lines X ordered in the other 
direction. Summiing this over all lines X of the decomposition and using (15), 

(a, a) ? 4 cl2cI3Zo a(P)Lia(P). 

The rest of the proof follows that of Lemma 3. 
Using this lemma the following theorem may be proved in the same manner as 

Theorem 1. 
THEOREM 2. Assume (A), (B), and (18). Then there is a constant C16 depending 

only on C7, C12, C13, C14, and d, such that if u E Hol n H2 is a solution of (1) and 
v E Co is the corresponding solution of (2), and e(P) = u(P) - v(P), then 

11 e 11f < hc16 11 U 112- 
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